Pearson Edexcel

Mark Scheme (Results)

January 2020

Pearson Edexcel International GCSE in
Chemistry (4CH1)
Paper 2CR

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2020
Publications Code 4CH1_2CR_msc_20200305
All the material in this publication is copyright
© Pearson Education Ltd 2020

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number	Answer	Notes	Marks
3 (a) 3 (b)	B Precipitation The only correct answer is B the reaction of two solutions to produce an insoluble solid is precipitation. A is not correct because this reaction is not neutralisation C is not correct because this reaction is not a redox reaction D is not correct because this reaction is not thermal decomposition M1 wash the solid with (deionised) water M2 suitable method of drying solid eg dry between filter papers/on paper towel/in (warm) oven/in a desiccator	ALLOW leave to dry ALLOW leave in a warm place ALLOW leave for the water to evaporate IGNORE dry it alone REJECT hot oven or any method of direct heating eg Bunsen burner REJECT references (direct or inferred) to silver chloride solution or crystallisation for M1 and M2 No M2 if solid washed after drying	1
3 (c)	Any one from: M1 (hydrochloric acid/it) contains chloride ions M2 (hydrochloric acid/it) produces a (white) precipitate with silver nitrate M3 (hydrochloric acid/it) reacts with silver nitrate	ALLOW contains Cl^{-}	1
3 (d)	$\begin{aligned} & \mathrm{M1} \mathrm{n}\left(\mathrm{AgNO}_{3} \text { or } \mathrm{AgCl}\right)=0.0025 \\ & \mathrm{M} 2(\text { mass } \mathrm{AgCl})=0.0025 \times 143.5=0.35(9) \mathrm{g} \end{aligned}$	ALLOW ECF from M1 ALLOW one or more sig fig Correct answer without working scores 2 marks.	2

Question number	Answer	Notes	Marks
4 (a)	M1 layers of atoms/positive ions M2 can slide over one another	IGNORE layers unqualified REJECT layers of molecules M2 DEP on mention of layers/atoms/ions in M1	2
4 (b) $\begin{array}{ll}\text { (i) } \\ & \\ & \\ & \\ & \text { (ii) } \\ & \\ & \\ & \\ & \text { (iii) }\end{array}$	ions cannot move	ALLOW ions are in fixed positions/in a lattice IGNORE no free ions REJECT any reference to electrons	1
	$2 \mathrm{Br}-\rightarrow \mathrm{Br}_{2}+2 \mathrm{e}-$		1
	M1 lead ions (are positive and) are attracted to the negative electrode / Pb^{2+} (ions) are attracted to the negative electrode	ALLOW cathode for negative electrode	2
	M2 lead ions gain electrons / Pb^{2+} (ions) gain electrons (to form lead)	ALLOW a correct half equation for M2 IGNORE references to redox ALLOW lead ions get discharged (to form lead)	
(iv)	metal or lead connects the electrodes or completes the circuit OWTTE	ALLOW metal or lead conducts electricity ALLOW metal or lead allows electrons to flow	1

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline \begin{tabular}{l}
5 (a) (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
Any two from: \\
M1 (lithium) moves (on the surface) \\
M2 (lithium) gets smaller/disappears \\
M3 colourless solution forms \\
(when mixed with air) \\
lit spill/splint or flame gives (squeaky) pop
\end{tabular} \& \begin{tabular}{l}
ALLOW floats \\
ALLOW dissolves \\
IGNORE white trail forms \\
REJECT melts / turns into a ball ALLOW temperature increases/heat given off \\
must refer to test and result \\
IGNORE squeaky pop test alone ALLOW burns with (squeaky) pop \\
REJECT glowing spill/splint and pop
\end{tabular} \& 2

1

\hline | 5 (b) (i) |
| :--- |
| (ii) | \& | Any one from: |
| :--- |
| M1 more rapid bubbles/fizzing/effervescence |
| M2 turns into a ball |
| M3 moves more quickly |
| M4 catches alight / burns / produces a flame |
| M1 potassium has more shells than lithium |
| M2 (therefore) there is less attraction between the outer shell/electron and the nucleus |
| M3 so the electron in the outer shell is more easily lost | \& | ALLOW potassium melts |
| :--- |
| ALLOW gets |
| smaller/disappears |
| more quickly |
| IGNORE flame colour |
| ALLOW potassium atom is bigger than lithium |
| ALLOW outer shell/electron is further from nucleus |
| ALLOW more repulsion (from inner shells) or more shielding (from the nuclear attraction) |
| ALLOW nuclear pull for the outer shell/electron is weaker |
| ACCEPT answers in terms of lithium for M1, M2 and M3 | \& 1

3

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline \begin{tabular}{l}
5 (c) (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
\(\mathrm{M} 1 \mathrm{n}(\mathrm{Li})=\frac{0.500}{7}\) OR 0.0714 \\
\(\mathrm{M} 2 \mathrm{n}\left(\mathrm{H}_{2}\right)=\frac{0.0714}{2}\) OR 0.0357 \\
M3 volume of \(\mathrm{H}_{2}(=0.0357 \times 24000)=857\left(\mathrm{~cm}^{3}\right)\) \\
\(\mathrm{M} 1 \mathrm{n}\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)=0.02485 \times 0.1\) OR 0.002485 \\
M2 \(\mathrm{n}(\mathrm{LiOH})=2 \times 0.002485\) OR 0.00497 \\
M3 concentration of \(\mathrm{LiOH}=0.0331\left(\mathrm{~mol} / \mathrm{dm}^{3}\right)\)
\end{tabular} \& \begin{tabular}{l}
ALLOW ECF from M1 \\
ALLOW ECF M2 x 24000 \\
M3 must be to 3 sig fig \\
Correct answer to 3 sig fig without working scores 3 marks. \\
ALLOW ECF from M1 \\
ALLOW ECF from M2
\[
(M 2 \div 0.150)
\] \\
ALLOW any number of sig fig except one for M1 M2 and M3 \\
Correct answer without working scores 3 marks.
\end{tabular} \& 3

3

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline \begin{tabular}{l}
7 (a) (i) \\
(ii) \\
(iii) \\
(iv)
\end{tabular} \& \begin{tabular}{l}
\[
\mathrm{CO}_{2}
\] \\
(otherwise) ethanoic acid will form \\
\(M 1\) (reaction is catalysed by) enzymes (in yeast) \\
M2 which will denature (above \(40^{\circ} \mathrm{C}\)) \\
M1 maximum mass of ethanol \(=8 \times 46=368(\mathrm{~g})\) \\
M2 \(\frac{55.2}{368} \times 100(=15 \%)\) \\
Alternative method: \\
M1 actual yield of ethanol in \(\mathrm{mol}=\frac{55.2}{46}=1.2\) \\
\(M 2 \frac{1.2}{8} \times 100 \quad(=15 \%)\)
\end{tabular} \& \begin{tabular}{l}
ALLOW (otherwise) ethanol will be oxidised or react with oxygen ALLOW fermentation/reaction/respiration needs to be anaerobic \\
ALLOW (otherwise) ethanol would not be formed \(/ \mathrm{CO}_{2}\) and \(\mathrm{H}_{2} \mathrm{O}\) would be formed \\
IGNORE yeast unqualified \\
ALLOW enzymes do not work above \(40^{\circ} \mathrm{C}\)
\end{tabular} \& 1
1

2
2

\hline | (b) (i) |
| :--- |
| (b) (ii) | \& | M1 rate of the forwards reaction = the rate of the backwards reaction |
| :--- |
| M2 the concentrations of reactants and products remain constant |
| M1 an increase in temperature shifts the (position of) equilibrium in the endothermic direction (so backwards reaction is endothermic) |
| M2 so forward reaction is exothermic | \& | IGNORE it is reversible reaction |
| :--- |
| REJECT concentrations of reactants and products are equal or are the same |
| IGNORE references to Le Chatelier's Principle ALLOW heating for increase in temperature |
| M2 DEP M1 or near miss | \& 2

\hline
\end{tabular}

$7 \quad \text { (c) } \quad \text { (i) }$	M1 (displayed formula of A - propanoic acid) M2 (displayed formula of B - butan-1-ol)	ALLOW 1 mark if both OH but otherwise correct	2
(c) (ii)	M1 add a named carbonate or hydrogencarbonate M2 effervescence/bubbles/fizzing OR M1 add a suitable named metal e.g. magnesium, aluminium, zinc, iron M2 effervescence/bubbles/fizzing OR M1 add a named alcohol (and some concentrated sulfuric acid and warm) M2 sweet smell (of an ester)	ALLOW correct formula M2 DEP M1 or near miss ALLOW carbon dioxide/ CO_{2} produced REJECT incorrect gas ALLOW correct symbol REJECT a metal that is too reactive e.g. potassium or too unreactive e.g. copper M2 DEP M1 or near miss ALLOW hydrogen/ H_{2} produced REJECT incorrect gas ALLOW correct formula M2 DEP M1 or near miss	2

